
International Journal of Thermal Sciences 46 (2007) 118–127
www.elsevier.com/locate/ijts

Application of the heat-balance integral to an inverse Stefan problem ✩

He-Sheng Ren

Institute of Thermal Engineering, College of Power Engineering, University of Shanghai for Science and Technology,
Jun Gong Road 516, Shanghai 200093, China

Received 23 February 2005; received in revised form 28 April 2006; accepted 28 April 2006

Available online 11 July 2006

Abstract

Most phase change process controls are concerned with the inverse Stefan problem. In this paper, the heat-balance integral method is applied
effectively to analyze the one-region and two-region inverse Stefan problems in Cartesian and spherical coordinates. It is shown that if the
movement of the phase change boundary is specified arbitrarily the present technique to predict both the temperature and its gradient at the
fixed boundary is simple and accurate. As numerical illustrations, the one-dimensional inward solidification problem in Cartesian and spherical
coordinates are solved and discussed in detail when the movement of the phase change interface is specified as a power function. The accuracy
of these approximate solutions, based on the heat-balance integral method, is demonstrated satisfyingly by comparison with the available exact
and/or numerical solutions for the one-region and the two-region problems.
© 2006 Elsevier Masson SAS. All rights reserved.

Keywords: Inverse Stefan problem; Heat-balance integral method; Heat conduction; Phase change; Inward solidification problem; Cryopreservation; Cryosurgery
1. Introduction

In the Stefan problem the thermal condition, temperature
and its gradient are usually specified at a fixed boundary and
the conditions at the moving boundary, the history of the phase
change boundary (a space–time curve), are to be solved by the
governing equation together with the fixed boundary condition.
In contrast to the direct Stefan problem, in the so-called inverse
Stefan problem the thermal conditions are specified at the mov-
ing interface rather than the fixed boundary. In other words, the
interface trajectory and its moving rate are known a prior. Both
the temperature and its gradient required at the fixed bound-
ary are to be determined so that the phase change boundary is
moving at the specified rate. In brief, the phase change problem
where the movement of the phase change boundary is speci-
fied rather than to be solved for, is known as an inverse Stefan
problem.

It should be noted that the solution of the inverse Stefan
problem not only provides information on the behavior of the
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Stefan problem, but also has wide practical applications in
physics and technique: e.g., crystallization of metal in metal-
lurgy, controlled fluidized bed baths for surface coating and
controlled ablation of thermal shields in aerospace engineer-
ing, etc. It is also applied to the cryopreservation of cells,
and cryosurgery [1,2]. One of the most important factors for
cells destruction or survival is the cooling rate during cryop-
reservation of biomaterials by freezing or vitrification. Studies
in thermodynamics and crystallization kinetics could provide
available information to estimate the cooling rates of cells so-
lidified into an ice crystal state or a noncrystalline glassy state
[3]. On the other hand, the determination and the control of the
cooling rate at the interface of phase change require solving the
heat conduction problem with phase change, direct and/or in-
verse Stefan problem.

Langford [4] obtained the solutions of the one-dimensional
inverse Stefan problem by a series expansion. When the moving
rate of the phase change interface is constant the series solution
reduced to the classical solution given by Stefan. Rubinsky and
Shitzer [1] obtained a long time analytic solution by means of
the integration of the governing equation and analytic iterations.
The solutions of the above methods are expressed in infinite se-
ries. Chow and Woo [5] suggested a numerical method based
on the Laplace transform. The inverse Laplace transform is per-
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Nomenclature

cp specific heat
i i = 0,1 for plane, sphere, respectively
L latent heat
n index of power function in Eq. (15)
r spatial coordinate
r0 position of the fixed boundary
R dimensionless spatial coordinate
s position of phase change interface
S dimensionless position of phase change interface
t time
T temperature
T0 reference temperature in Eq. (2) or initial

temperature in Eq. (34)
Tph phase change temperature
u dimensionless temperature defined in Eqs. (2)

and (34)

Ste Stefan number defined in Eq. (2)

Greek symbols

α thermal diffusivity
β constant in Eq. (15)
γ Euler’s constant
δ thermal layer thickness
ρ density
λ thermal conductivity
τ dimensionless time defined in Eq. (2)
θ dimensionless temperature defined in Eqs. (3)

and (34)
Θ defined in Eqs. (6) and (37)

Subscripts

l liquid phase
s solid phase
formed by using a statistical technique. Jiang et al. [6] chose the
Stefan number, Ste, as a small parameter and obtained the per-
turbation solution for a planar inverse Stefan problem. The heat-
balance integral was suggested to solve the one-dimensional
inverse Stefan problem [2], which can be applied to cryopreser-
vation of biomaterials. Using an integral method, Zabaras et al.
[7] provided the solution of a two-phase inverse heat transfer
problem with phase change. Due to given temperature gradi-
ents of both liquid and solid phases on the moving interface,
the solution is equivalent to the solution of two separate in-
verse moving boundary problems. Budman et al. [8] presented
an integral solution for inverse Stefan problem of a nonideal bi-
nary solution. The condition of a constant cooling/thawing rate
at the freezing front was assumed. A combined solution of the
one-dimensional and semi-infinite inverse Stefan problem in bi-
ological tissues was presented by Rabin and Shitzer [9]. The
analysis combines a heat balance integral solution in the frozen
region and a numerical enthalpy-based solution approach in the
unfrozen region.

The heat-balance integral method was introduced previously
to analyze the direct phase change problem by Goodman [10],
and applied to the three-dimensional problem of the freezing of
a cuboid by Riley and Duck [11]. Bell [12] suggested a refine-
ment of the heat balance integral method with equal subdivision
of the dependent variable temperature. More information has
been given in the review book by Crank [13]. Caldwell and Chiu
[14] extended this method to the two-phase Stefan problem in
cylindrical and spherical geometries. Mosally et al. investigated
the use of several exponential functions both for whole-domain
solutions and for piecewise solutions [15].

The purpose of the present study is using the heat-balance
integral method to solve the one-dimensional inward solidifica-
tion inverse Stefan problem, when the movement of the phase
change interface is specified. The one-region problem with the
freezing of a liquid layer initially at the phase change tempera-
ture is analyzed firstly by using a cubic polynomial temperature
profile for solid phase. The more general two-region problem
is then considered, in which the initial liquid temperature is
higher than the freezing temperature. The cubic polynomial
temperature distributions are chosen for both the liquid and
solid phases. As numerical illustrations, the approximate ana-
lytic solutions expressed in finite forms for both the Cartesian
and spherical geometries are obtained when the movement of
the phase change interface is specified as S = 1 − (βτ)1/n. The
results are in good agreement compared with the exact or nu-
merical solutions given in the literature.

2. Analysis

2.1. One-region problem

2.1.1. Governing equations
The problem of the one-dimensional inward solidification or

freezing is considered here. It is assumed that the entire domain
is initially the liquid at the phase change temperature. Along
with solidification or freezing at the fixed boundary at time zero,
the domain is separated into the solid and liquid phase by the
phase change interface. The liquid phase being at a constant
phase change temperature Tph throughout, the temperature is
unknown only in the solid phase, so the problem is a one-region
problem. The location of the moving interface is a monotonic
function of time. As for the inverse Stefan problem, the varia-
tion of the interface with time is specified and controlled, i.e.,
it is a known function of time. At this moving boundary the
temperature of the solid is maintained at the phase change tem-
perature and the latent heat released by the liquid during the
solidification is equal to the heat conducted into the solid. The
characteristic is shown in Fig. 1.

Since the constant thermophysical properties are assumed,
the problem can be formulated by the following governing
equation of the solid and the boundary conditions at the phase
change interface:
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Fig. 1. Schematic drawing of model for (a) Cartesian geometry, (b) spherical
geometry.
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∂Ts

∂t
, s(t) < r � r0, t > 0 (1a)

Ts = Tph, r = s(t), t > 0 (1b)

λs

∂Ts

∂r
= ρL

ds

dt
, r = s(t), t > 0 (1c)

s(0) = r0 (1d)

where r0 is the position of the fixed boundary.
It should be noted that the governing equation (1a) can be

applicable for either Cartesian or spherical geometry, i.e., i = 0
or 1 for plane and sphere, respectively. The mathematical for-
mulations are also valid for outward solidification problem as
well as inward or outward melting problem. The latent heat L

in Eq. (1c) is taken positive for solidification and negative for
melting. The moving rate of the phase change interface, ds/dt ,
is taken negative value for inward problem and positive value
for outward problem.

Now define the following nondimensional parameters:

us = Ts − Tph

T0 − Tph
, R = r

r0
, τ = αst

r2
0

S = s

r0
, Ste = cp(T0 − Tph)

L
(2)

where T0 is an external reference temperature. A new variable
θ(R, τ) is defined as:

θs = Rius (3)

Then, Eqs. (1a)–(1d) can be nondimensionalized as follows:

∂2θs

∂R2
= ∂θs

∂τ
, S(τ ) < R � 1, τ > 0 (4a)

θs = 0, R = S(τ), τ > 0 (4b)

∂θs

∂R
= Si

Ste

dS

dτ
, R = S(τ), τ > 0 (4c)

S(0) = 1 (4d)

2.1.2. Heat-balance integral method
Goodman [10] used the heat-balance integral method to

solve a one-dimensional transient melting problem. The basic
steps of this method can be summarized as follows. First define
a thermal layer thickness, which is identical to the definition of
the location of the phase change interface, S(τ). A suitable pro-
file, generally a polynomial profile, is then chosen for the tem-
perature distribution over the thermal layer. The coefficients in
the polynomial are determined by utilizing the fixed and mov-
ing boundary conditions in terms of the thermal layer thickness,
i.e., the position of the interface. After the temperature profile is
introduced into the heat-balance integral equation, an ordinary
differential equation is obtained for the location of the phase
change interface. The solution of this differential equation gives
the moving interface position as a function of time. Substituting
S(τ) into the polynomial profile, the temperature distribution is
finally determined completely.

When the heat-balance integral method is applied to the in-
verse Stefan problem, it is not necessary to determine the func-
tional relation between the position of the moving boundary
and the time, because it has been specified a priori. Therefore,
a polynomial temperature profile which satisfies all the mov-
ing boundary conditions and consists of a number of adjustable
coefficients can be directly inserted into the heat-balance inte-
gral equation. We now summarize the basic steps in the solution
of the inverse Stefan problem with the heat-balance integral
method. At first the governing equation is integrated with re-
spect to the space variable from the fixed boundary to the
moving boundary. As a result, an integral equation is obtained.
A selected polynomial temperature profile, wherein some of
the coefficients are determined by the moving boundary condi-
tions, is then substituted into the heat-balance integral equation.
The resulting equation is an ordinary differential equation for
the undetermined coefficient. Solving this ordinary differen-
tial equation, the undetermined coefficient and the temperature
distribution satisfied the moving boundary conditions and the
heat-balance integral equation can be obtained finally.

The heat-balance integral method stated above is now ap-
plied to the one-dimensional inward inverse Stefan problem.
The integration of governing equation (4a) from R = 1 to
R = S(τ) gives following heat-balance integral equation(

∂θs

∂R

)
R=S

−
(

∂θs

∂R

)
R=1

= dΘs

dτ
(5)

The Leibnitz’s rule and condition (4b) have been used and de-
fined

Θs =
S∫

1

θs dR (6)

To solve this equation we assume a cubic polynomial repre-
sentation for θs in the form

θs = a + b

(
R − S

1 − S

)
+ c

(
R − S

1 − S

)2

+ d

(
R − S

1 − S

)3

(7)

where the coefficients are in general functions of S(τ). Four
conditions are required to determine these coefficients. Eqs. (4b)
and (4c) provide two conditions to determine a and b. Another
condition can be developed as described by Goodman [10,13].

Eq. (4b) is differentiated with respect to τ

∂θs dS + ∂θs = 0 (8)

∂R dτ ∂τ
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Substituting from Eq. (4c) for ∂θs/∂R and Eq. (4a) for ∂θs/∂τ ,
an additional derived condition at moving interface is then ob-
tained:

∂2θs

∂R2
= − Si

Ste

(
dS

dτ

)2

(9)

Three of these coefficients can be determined by three condi-
tions (4b), (4c) and (9):

a = 0, b = (1 − S)Si

Ste

(
dS

dτ

)

c = − (1 − S)2Si

2 · Ste

(
dS

dτ

)2

(10)

From Eqs. (6) and (7), a relation between the undetermined co-
efficient d and other coefficients and Θs can then be obtained
as follows:

d = −4

(
Θs

1 − S
+ b

2
+ c

3

)
(11)

Introducing Eq. (7) together with Eqs. (10) and (11) into
Eq. (5) and performing the indicated operations, we obtain the
following first-order linear ordinary differential equation for the
determination of Θs

dΘs

dS
= 12Θs

(1 − S)2

(
dS

dτ

)−1

+ 6

Ste
Si − (1 − S)Si

Ste

(
dS

dτ

)
(12)

When the variation of the phase change interface with time
is given Θs can be easily solved. The coefficient d is then de-
termined from Eq. (11). Finally, all of four coefficients in the
selection temperature profile are completely determined.

For the control-type inverse Stefan problem, we do not pay
attention to the temperature distribution in the entire domain.
We are interested in what are the thermal conditions required at
the fixed boundary so that the phase change boundary is mov-
ing at the specified rate. In other words, both the temperature
and its gradient, namely, the heat flow rate at the fixed bound-
ary, should be solved. From Eqs. (3), (7), (9) and (11) as well
as Θs solved above, the temperature and its gradient at the fixed
boundary are respectively given as

us(1, τ ) = − 4Θs

1 − S
− (1 − S)Si

Ste

(
dS

dτ

)

+ (1 − S)2Si

6 · Ste

(
dS

dτ

)2

(13)

∂us(1, τ )

∂R
= −4(2 + Si)

(1 − S)2
Θs − (4 + Si)Si

Ste

(
dS

dτ

)

+ (5 + Si)Si(1 − S)

6 · Ste

(
dS

dτ

)2

(14)

where i = 0 for Cartesian geometry; i = 1 for spherical geom-
etry.

2.1.3. Numerical illustrations
In this section, some examples are given, to illustrate the

application of the heat-balance integral method in the inverse
Stefan problem. We consider the one-dimensional inward so-
lidification problem subject to different conditions prescribed
at the moving boundary. The solutions are presented for both
the Cartesian and spherical geometries and compared with the
exact or numerical solutions.

Cartesian geometry (i = 0). This corresponds to a planar in-
verse Stefan problem (Fig. 1(a)). We suppose that the phase
change interface varies with time following the power law:

S(τ) = 1 − (βτ)1/n (15)

Hence, its moving rate is

dS

dτ
= −β

(1 − S)1−n

n
(16)

where both n and β are positive constants. Substituting the
above equation into Eq. (12), we obtain the following ordinary
differential equation for the determination of Θs

dΘs

dS
= A(S)Θs + B(S) (17)

where

A(S) = − 12n

(1 − S)3−nβ
, B(S) = 6

Ste
+ β(1 − S)2−n

n · Ste
(18)

We note that, the nonhomogeneous term B(S) on the right-
hand side of Eq. (18) is a constant when n = 2, and is a positive
power function of (1 − S) when n < 2. Thus, for n � 2 the
condition needed to determine the integral constant in the gen-
eral solution can be given as Θs(1) = 0, by Eq. (8). However,
B(S) is a negative power function of (1 − S) when n > 2. It
is meaningless at S = 1. We also note that before the phase
change boundary reaches the end of the slab, the problem is the
same as that of a semi-infinite slab in which the temperature
of the liquid phase is maintained at phase change temperature
throughout [5]. Hence, as R → ∞, thus S(τ) → ∞, the tem-
perature distribution should be a finite value. Therefore, for the
case n > 2, the condition needed to determine the integral con-
stant is given as Θs(S) → finite.

Knowing Θs , the temperature and its gradient at the fixed
boundary are then determined from Eqs. (13) and (14), respec-
tively. To compare with the exact or numerical solutions, the
temperature and its gradient at the fixed boundary are given for
these different values of the parameter n, namely, 1,2 and 3 re-
spectively.

(1) n = 1, S(τ ) = 1 − βτ

us(1, τ ) = 1

Ste

{
3β2τ + β4τ 2

6

+ 48

[
1 − 12

β2τ
e−12/(β2τ)

(
Ei

(
12

β2τ

)
− γ

)]}
(19)

∂us(1, τ )

∂R
= 1

Ste

{
11β + β2τ

+ 144

βτ

[
1 − 12

β2τ
e−12/(β2τ)

(
Ei

(
12

β2τ

)
− γ

)]}
(20)
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Euler’s constant γ = 0.57721566 and Ei(x) is an exponential
integral function [16]. As the phase change interface is mov-
ing at a constant rate, the exact solution is known as classical
Stefan’s solution [17]:

us(1, τ ) = 1

Ste

(
1 − eβ2τ

)
(21)

∂us(1, τ )

∂R
= − β

Ste
eβ2τ (22)

(2) n = 2, S(τ ) = 1 − (βτ)1/2

us(1, τ ) = β(β2 + 36β + 288)

24 · Ste(β − 24)
(23)

∂us(1, τ )

∂R
=

√
β(β2 + 10β + 48)

4
√

τ · Ste(β − 24)
(24)

For this case, the exact solution is given by Neumann as [17]:

us(1, τ ) = −
√

πβ

2 · Ste
eβ/4erf

(√
β

2

)
(25)

∂us(1, τ )

∂R
= −

√
β

2 · Ste
eβ/4τ−1/2 (26)

(3) n = 3, S(τ ) = 1 − (βτ)1/3

us(1, τ ) = β

Ste

{
− (βτ)−1/3

3
+ β1/3τ−2/3

27

[
1

2
− 36β−2/3

× τ 1/3e36β−2/3τ 1/3
E1

(
36β−2/3τ 1/3)]}

(27)

∂us(1, τ )

∂R
= β

Ste

{
− (βτ)−2/3

3
+ τ−1

9

[
1 − 36β−2/3τ 1/3

× e36β−2/3τ 1/3
E1

(
36β−2/3τ 1/3)]} (28)

where E1(x) = −Ei(−x). There is no known exact solution to
this case. Using a Laplace transform technique Chow and Woo
[5] obtained the numerical results for the case n = 3, Ste = 1
and β = 1. The same numerical results were also given by Fred-
erick and Grief [18].

In Tables 1–3, the numerical values of the temperature and
its gradient at the fixed boundary in Cartesian geometry are
given for Ste = 1, β = 1, n = 1,2,3, respectively. For these
cases, the present method based on the heat-balance integral
yields results that agree reasonably well with the exact or nu-
merical solution for 0.1 � τ � 1. When n = 1, the present
results seem to agree with the exact solution better than that
of Chow and Woo [5]. At τ = 0.8, the relative error of the
result given in [5] is 24%, whereas the one based on the heat-
balance integral method is only 2% at τ = 1. When n = 2 and
3, the maximum error is less than 0.6% and 1%, respectively.
At τ = 1, the position of the phase change interface S = 0, the
entire domain has been solidified so that the problem is trans-
formed to the pure solid phase conduction when τ > 1. From
this time on, the calculated results have no longer the physical
significance of the phase-change heat conduction.

The parameter β has an effect on the solution. With the
increase of β the relative error between the exact and the heat-
balance integral approximate solution will be enlarged. With
Table 1
The temperature and its gradient at the fixed boundary in Cartesian geometry
for Ste = 1, S = 1 − τ

τ us(1,R) ∂us(1,R)/∂R

Stefan [17] Chow [5] present Stefan [17] Chow [5] present

0.1 −0.1052 −0.1052 −0.1052 −1.1052 −1.1048 −1.1050
0.3 −0.3499 −0.3510 −0.3499 −1.3499 −1.3510 −1.3495
0.5 −0.6487 −0.6483 −0.6499 −1.6487 −1.6306 −1.6493
0.7 −1.0138 −0.8701 −1.0198 −2.0138 −1.8335 −2.0206
0.9 −1.4596 −1.4811 −2.4596 −2.4869
1.0 −1.7183 −1.7552 −2.7183 −2.7656

Table 2
The temperature and its gradient at the fixed boundary in Cartesian geometry
for Ste = 1, S = 1 − τ1/2

τ us(1,R) ∂us(1,R)/∂R

Neumann [17] Chow [5] present Neumann [17] Chow [5] present

0.1 −0.5923 −0.5923 −0.5888 −2.0302 −2.0304 −2.0280
0.3 −0.5923 −0.5923 −0.5888 −1.1721 −1.1725 −1.1709
0.5 −0.5923 −0.5923 −0.5888 −0.9079 −0.9080 −0.9069
0.7 −0.5923 −0.5923 −0.5888 −0.7674 −0.7675 −0.7665
0.9 −0.5923 −0.5888 −0.6767 −0.6760
1.0 −0.5923 −0.5888 −0.6420 −0.6413

Table 3
The temperature and its gradient at the fixed boundary in Cartesian geometry
for Ste = 1, S = 1 − τ1/3

τ us(1,R) ∂us(1,R)/∂R

Frederick [18] Chow [5] present Frederick [18] Chow [5] present

0.1 −0.8035 −0.8036 −0.7949 −1.4744 −1.4759 −1.4875
0.3 −0.5391 −0.5392 −0.5361 −0.7274 −0.7275 −0.7290
0.5 −0.4493 −0.4494 −0.4474 −0.5209 −0.5210 −0.5219
0.7 −0.3989 −0.3989 −0.3975 −0.4176 −0.4177 −0.4181
0.9 −0.3651 −0.3644 −0.3539 −0.3542
1.0 −0.3518 −0.3509 −0.3301 −0.3304

decreasing β , it will be reduced. For example, when β = 0.5,
n = 1 and 2, the maximum error is decreased to 0.18% and
0.15% respectively. If β decreases still further, the maximum
error will become smaller. So we can say, when β � 1 the max-
imum error between the present and exact solution is not greater
than 2%.

It is noteworthy that the effect of the Stefan number, Ste, on
solutions obtained by the heat-balance integral method is con-
sistent with exact solutions. Therefore, unlike the perturbation
solution, which is applied only to small Ste, the heat-balance
integral method can be applied whether the Stefan number is
large or small.

It can be seen from the above solutions and analyses of
Eq. (18) that there is a critical case concerning the tempera-
ture of the fixed boundary when the phase change interface
varies with time following a power law. The temperature at
the fixed boundary, u(1, τ ), is a constant independent of time
when n = 2. When n < 2, u(1, τ ) is equal to zero at τ = 0,
and then decreases with time. While n > 2, u(1, τ ) approaches
−∞ at τ = 0, then increases with time so as to approach the
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phase change temperature. These conclusions are consistent
with Ref. [6].

Spherical geometry (i = 1). As an illustration to the results
in spherical coordinates the simple case of a constant rate of
the moving boundary is studied. The movement of the phase
change interface as a function of time is assumed to be S =
1 − βτ . Once Θs is determined from the solution of the or-
dinary differential equation (12) together with the condition
Θs(1) = 0, the temperature and its gradient at the fixed bound-
ary can be solve from Eqs. (13) and (14), respectively. We
obtain

us(1, τ ) = 1

Ste

{
−1

6
β5τ 3 + 1

6
β3(β − 14)τ 2 + β(3β − 20)τ

− 48(5 − β)

β

[
1 − 12

β2τ
e−12/(β2τ)

×
(

Ei

(
12

β2τ

)
− γ

)]}
(29)

∂us(1, τ )

∂R
= 1

Ste

{
1

6
β5τ 3 + 7

6
β3(β − 2)τ 2

+ β(β − 2)(β − 10)τ + 11β − 60

− 48(3 − βτ)(5 − β)

β2τ

×
[

1 − 12

β2τ
e−12/(β2τ)

(
Ei

(
12

β2τ

)
− γ

)]}
(30)

The exact solution of the same problem is obtained by Lang-
ford [4] as

us(1, τ ) = − 1

Ste

{(
1 + 2

β

)(
eβ2τ − 1

) − 2βτeβ2τ

}
(31)

∂us(1, τ )

∂R
= − 1

Ste

{
2

β
+

(
β − 2

β
+ 2βτ − 2β2τ

)
eβ2τ

}
(32)

A comparison of the approximate and exact solution is given
in Fig. 2. The agreement is good for 0� τ � 1. It can be seen
clearly from Fig. 2 that the one-dimensional inward solidifi-
cation problem in spherical geometry is different from that
in Cartesian geometry. The temperature gradient at the fixed
boundary, ∂u(1,R)/∂R, namely the heat flux, is negative when
τ < 0.69. This is meant that heat is removed from the fixed
boundary. While τ > 0.69, the temperature gradient is posi-
tive if the required phase change interface continues at the same
constant velocity to the center of the sphere, i.e., it is then neces-
sary to add rather than to remove heat from the fixed boundary.

As for the temperature at the fixed boundary, u(1, τ ), it is
initially equal to the phase change temperature. Then, u(1, τ )

will decrease gradually with time until the phase change inter-
face has moved halfway to the center of the sphere. At τ = 0.5,
u(1, τ ) decreases to the lowest value. If a constant velocity is
required to continue the movement of the phase change inter-
face, it is necessary that u(1, τ ) increase with time. As a result,
u(1, τ ) = 0 (Ts returns to the phase change temperature) at
about τ = 0.87. With the movement of the interface to the cen-
ter of the sphere u(1, τ ) will increase with time as a positive
Fig. 2. The temperature and its gradient at the fixed boundary for the inward
solidification problem in spherical geometry (Ste = 1, S = 1 − τ ).

value, namely u(1, τ ) > 0. This means that the solidified do-
main adjoined to the fixed boundary will be melted again and
becomes warmer in order to keep the phase change interface
continuously moving at the constant velocity. However, it is
contradictory to the problem of inward solidification. Therefore
the solution cannot be valid for τ > 0.87 and the problem has
to be reformulated.

2.2. Two-region problem

2.2.1. Governing equations
When the initial liquid temperature T0 is higher than the

freezing temperature Tph, the inverse Stefan problem is a two-
region problem because the temperatures are unknown in both
the solid and liquid phases. In the following analysis the one-
dimensional inward solidification with Cartesian and spherical
coordinate systems confined in a finite medium, 0 � R � 1 are
considered. The governing equations with initial condition and
moving boundary conditions are as follows in the dimension-
less form:

For the liquid phase:

∂2θl

∂R2
= αs

αl

∂θl

∂τ
, 0 � R < S(τ), τ > 0 (33a)

θl = Ri, τ = 0 (33b)

For the solid phase:

∂2θs

∂R2
= ∂θs

∂τ
, S(τ ) < R � 1, τ > 0 (33c)

and for the solid–liquid interface:

θl = θs = 0, R = S(τ) (33d)

∂θs

∂R
− λl

λs

∂θl

∂R
= Si

Ste

dS

dτ
, R = S(τ) (33e)

S(0) = 1 (33f)
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It is the same as the one-region problem, i = 0,1 for Cartesian
geometry, sphere geometry, respectively. Some dimensionless
quantities are defined in (2) and (3), others are defined as

ul = Tl − Tph

T0 − Tph
, θl = Riul (34)

where T0 is the initial temperature for the two-region problem.

2.2.2. Heat-balance integral method
To apply the heat-balance integral method for the two-region

inverse problem, besides the interface of phase change, another
thermal layer δ(τ ) is defined as the penetration distance be-
yond which, for practical purposes, there is no heat flow (i.e.,
∂ul/∂R = 0 at R = δ(τ )); hence the initial temperature distrib-
ution remains unaffected (i.e., ul(δ(τ ), τ ) = 1 at R = δ(τ )); An
additional smooth condition (i.e., ∂2ul/∂R2 = 0 at R = δ(τ ))

can be derived as given by Goodman [10]. For the finite re-
gion considered here the thermal layer concept is valid so long
as 0 < δ(τ) � 1. The heat conduction equations (33a) for the
liquid phase and (33c) for the solid phase are integrated from
R = S(τ) to R = δ(τ ) and R = 1 to R = S(τ), respectively.
Utilizing condition (33d), heat-balance integral equations for
liquid phase and solid phase respectively are obtained as fol-
lows(

∂θl

∂R

)
R=δ

−
(

∂θl

∂R

)
R=S

= αs

αl

[
dΘl

dτ
− θl(δ, τ )

dδ

dτ

]
(35)

(
∂θs

∂R

)
R=S

−
(

∂θs

∂R

)
R=1

= dΘs

dτ
(36)

where Θs is defined by Eq. (6) and

Θl =
δ∫

S

θl dR (37)

A cubic polynomial representation for θl is chosen as

θl = Al + Bl

(
R − δ

S − δ

)
+ Cl

(
R − δ

S − δ

)2

+ Dl

(
R − δ

S − δ

)3

(38a)

By the definition of the thermal layer described above and
Eq. (34), we have three conditions at R = δ(τ ) needed to de-
termine these four coefficients as

R = δ(τ ), θl = δi,
∂θl

∂R
= i,

∂2θl

∂R2
= 0 (39)

Introducing Eqs. (39) and (33d) into (38a) we obtain

θl = Ri − Si

(
R − δ

S − δ

)3

(38b)

For solid phase θs , a cubic temperature profile is also chosen,
similarly to (7), as

θs = As + Bs

(
R − S

1 − S

)
+ Cs

(
R − S

1 − S

)2

+ Ds

(
R − S

)3

(40)

1 − S
The coefficients As,Bs and Cs are determined by the applica-
tion of the interface conditions (33d), (33e) and an additional
derived condition

R = S(τ),
∂2θs

∂R2
− λl

λs

αl

αs

∂2θl

∂R2
= − Si

Ste

(
dS

dτ

)2

(41)

which can be obtained by differentiating equation (33d) with
respect to time and applying Eqs. (33a), (33c) and (33e), as in
the one-region problem discussed above. We obtain

As = 0 (42a)

Bs = (1 − S)

[
Si

Ste

(
dS

dτ

)
+ λl

λs

(
i − 3Si

S − δ

)]
(42b)

Cs = (1 − S)2

2

[
− Si

Ste

(
dS

dτ

)2

− λl

λs

αl

αs

6Si

(S − δ)2

]
(42c)

From Eqs. (37) and (40), a relation between the coefficient Ds

and other coefficients and Θs can then be obtained as follows:

Ds = −4

(
Θs

1 − S
+ Bs

2
+ Cs

3

)
(42d)

Introducing Eqs. (40) and (42) into Eq. (36), the heat-balance
integral equation for solid phase becomes

dΘs

dS
= 12Θs

(1 − S)2

(
dS

dτ

)−1

+ 6

[
Si

Ste
+ λl

λs

(
i − 3Si

S − δ

)(
dS

dτ

)−1]

− (1 − S)

[
Si

Ste

(
dS

dτ

)

+ λl

λs

αl

αs

6Si

(S − δ)2

(
dS

dτ

)−1]
(43)

Similar to Eq. (12) for the one-region problem, Eq. (43) is
also a first-order linear ordinary differential equation. Once Θs

is determined from the solution of above equation, Ds is eval-
uated from Eq. (42d). Both the temperature and its gradient at
the fixed boundary R = 1, can be solved from Eqs. (40), (42)
and (3) as follows

us(1, τ ) = − 4Θs

1 − S
− (1 − S)

[
Si

Ste

(
dS

dτ

)
+ λl

λs

(
i − 3Si

S − δ

)]

+ (1 − S)2
[

Si

6 · Ste

(
dS

dτ

)2

+ λl

λs

αl

αs

Si

(S − δ)2

]
(44)

∂us(1, τ )

∂R
= −4(2 + Si)

(1 − S)2
Θs

− (
4 + Si

)[ Si

Ste

(
dS

dτ

)
+ λl

λs

(
i − 3Si

S − δ

)]

+ (1 − S)
(
5 + Si

)[ Si

6 · Ste

(
dS

dτ

)2

+ λl

λs

αl

αs

Si

(S − δ)2

]
(45)

Comparing the above equations for the two-region problem
with corresponding equations for the one-region problem, they
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are of the same form except the heat layer thickness δ(τ ) term
involved in Eqs. (42)–(45). Once δ(τ ) is solved, as below, the
temperature and its gradient at the fixed boundary could be
completely determined. Note that Eqs. (43)–(45) for the two-
region are reduced to Eqs. (12)–(14) for the one-region prob-
lem, respectively, if λl/λs = 0.

Substituting Eqs. (38b) and (37) into the heat-balance in-
tegral equation (35) for liquid phase, we obtain the following
first-order ordinary differential equation for the determination
of δ(τ ):

μ
dμ

dS
−

(
4 − i

μ

S

)
μ − 12

αl

αs

(
dS

dτ

)−1

= 0 (46)

where μ = S − δ. The solution of this equation is discussed in
the next section.

2.2.3. The relation of S(τ) and δ(τ )

By solving Eq. (46) subject to the appropriate initial condi-
tion the relation between S(τ) and δ(τ ) could be determined.
This equation is a nonlinear first-order ordinary differential
equation. There is no general exact solution. We choose two
cases in the following analysis, i.e., Cartesian geometry, and
the phase change interface varies with time following the power
law for n = 1 and 2, respectively.

(1) i = 0, n = 1, S(τ) = 1 − βτ : This case represents the
phase change interface moving at a constant rate. Eq. (46) be-
comes

μ
dμ

dS
− 4μ + 12

β

αl

αs

= 0 (47a)

with

μ = 0 for S = 1 (47b)

The exact solution of Eq. (47) is

S = 1 + S − δ

4
+ 3αl

4βαs

ln

(
1 − βαs(S − δ)

3αl

)
(48)

This equation cannot yet be used to substitute into Eqs. (43)–
(45) to calculate Θs , us , and ∂us/∂R directly, because δ(τ ) is
implicit in the above equation. A numerical integral is needed
to solve Θs from Eq. (43). The temperature and its gradient
at the fixed boundary for this case can then be evaluated from
Eqs. (44) and (45), respectively.

(2) i = 0, n = 2, S(τ) = 1 − (βτ)1/2: This case is equivalent
to the direct Stefan problem with the constant temperature at
the fixed boundary. Eq. (46) is rewritten as

μ
dμ

dS
− 4μ + 24

β

αl

αs

(1 − S) = 0 (49a)

with

μ = 0 for S = 1 (49b)

The exact solution of Eq. (49a) subject to condition (49b)
results in the following relation between S(τ) and δ(τ )

S − δ = ξ(1 − S) (50a)

where

ξ = −2

(
1 −

√
1 + 6αl

βαs

)
(50b)
Substituting Eq. (50) into the ordinary differential equa-
tion (43) subject to the condition Θs = 0 for S = 1,Θs is solved

Θs = −β(1 − S)

β − 24

(
6

Ste
+ 36λl

ξβλs

+ β

2 · Ste
+ 12λlαl

ξ2βλsαs

)
(51)

Thus the temperature and its gradient at the fixed boundary
can be solved from Eqs. (44) and (45), respectively

us(1, τ ) = − 4Θs

1 − S
+ β

2 · Ste
+ 3λl

ξλs

+ β2

24 · Ste
+ λlαl

ξ2λsαs

(52)

∂us(1, τ )

∂R
= − 12Θs

(1 − S)2
+ 1

(1 − S)

×
(

5β

2 · Ste
+ 15λl

ξλs

+ β2

4 · Ste
+ 6λlαl

ξ2λsαs

)
(53)

If λl/λs = 0, Eqs. (52) and (53) for the two-region problem
are reduced to Eqs. (23) and (24) for the one-region problem,
respectively. Similar to the one-region problem the temperature
at the fixed boundary is also a constant. No exact solution is
available for this two-region inverse Stefan problem, namely
inward solidification of a slab of finite thickness. An analytical
solution of the corresponding direct Stefan problem obtained by
a combination of the exact and the approximate integral method
has been reported by Cho and Sunderland [19]. The expressions
of the temperature and its gradient at the fixed boundary can be
rewritten with present terms, respectively

us = −eβ/4erf

(√
β

2

)( √
πβ

2 · Ste
+ λl

Z3λs

√
αs

αl

)
(54)

∂us

∂R
= − eβ/4

√
πτ

( √
πβ

2 · Ste
+ λl

Z3λs

√
αs

αl

)
(55)

where

Z3 = −2

3

√
βαs

παl

(
1 −

√
1 + 6αl

βαs

)
(56)

erf (x) is an error function. Numerical results tabulated in Ta-
bles 4–6 show comparisons of both methods for different values
of Ste and β . The relative deviation of the temperature is less
than 2.3%; the temperature gradient is less than 1% within the
range of Ste and β listed in the tables.

3. Summary and conclusions

The heat-balance integral method cannot only be applied to
the Stefan problem, but can also be applied to the inverse Ste-
fan problem effectively. In this paper, the heat-balance integral
method has been employed to analyze the one-dimensional in-
verse Stefan problem in Cartesian and spherical geometry when
the movement of the phase change interface is specified. The
approximate analytic solutions expressed in finite forms could
avoid the difficulties of estimating the convergence of the series
solution. It is not required that the Stefan number, Ste, must be
a small parameter as in the perturbation solution. The present
method is both simple and accurate for predicting the neces-
sary temperature and heat flux variation that would be required
at the fixed boundary when the movement of the phase change
interface is prescribed.
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Table 4
The temperature at the fixed boundary for different values of Ste and β and λl/λs = 1, αs/αl = 1 (two-region problem, Cartesian geometry, n = 2)

β Ste = 0.05 Ste = 0.1 Ste = 0.5 Ste = 1 Ste = 5

Cho [19] present Cho[19] present Cho[19] present Cho[19] present Cho[19] present

0.04 −0.5365 −0.5380 −0.3351 −0.3366 −0.1740 −0.1756 −0.1539 −0.1554 −0.1378 −0.1393
0.1 −1.2408 −1.2444 −0.7324 −0.7359 −0.3256 −0.3292 −0.2748 −0.2784 −0.2341 −0.2377
0.5 −6.0644 −6.0685 −3.3452 −3.3536 −1.1700 −1.1816 −0.8981 −0.9101 −0.6805 −0.6929
1 −12.9256 −12.8664 −7.0026 −6.9787 −2.2643 −2.2686 −1.6720 −1.6798 −1.1981 −1.2088
2 −30.3298 −29.6439 −16.2229 −15.8561 −4.9374 −4.8258 −3.5267 −3.4470 −2.3982 −2.3439

Table 5
The temperature gradient at the fixed boundary for different β and Ste = 1, λll/λs = 1, αs/αl = 1 (two-region problem, Cartesian geometry, n = 2)

Ste = 1, β = 0.1 Ste = 1, β = 0.5 Ste = 1, β = 1 Ste = 1, β = 2

τ Cho [19] present τ Cho[19] present τ Cho[19] present τ Cho[19] present

1 −0.87626 −0.87654 0.2 −2.9587 −2.9635 0.1 −5.7311 −5.7382 0.05 −13.0343 −12.9366
2 −0.61961 −0.61981 0.4 −2.0921 −2.0955 0.2 −4.0525 −4.0575 0.10 −9.2166 −9.1476
3 −0.50591 −0.50607 0.6 −1.7082 −1.7110 0.3 −3.3088 −3.3130 0.15 −7.5253 −7.4689
4 −0.43813 −0.43827 0.8 −1.4794 −1.4817 0.4 −2.8655 −2.8691 0.20 −6.5171 −6.4683
5 −0.39188 −0.39200 1.0 −1.3232 −1.3253 0.5 −2.5630 −2.5662 0.25 −5.8291 −5.7854
6 −0.35773 −0.35785 1.2 −1.2079 −1.2098 0.6 −2.3397 −2.3426 0.30 −5.3212 −5.2813
7 −0.33120 −0.33130 1.4 −1.1183 −1.1201 0.7 −2.1661 −2.1688 0.35 −4.9265 −4.8896
8 −0.30980 −0.30990 1.6 −1.0461 −1.0477 0.8 −2.0262 −2.0288 0.40 −4.6083 −4.5738
9 −0.29209 −0.29218 1.8 −0.98624 −0.98782 0.9 −1.9104 −1.9127 0.45 −4.3448 −4.3122

10 −0.27710 −0.27719 2.0 −0.93563 −0.93713 1.0 −1.8123 −1.8146 0.50 −4.1218 −4.0909

Table 6
The temperature gradient at the fixed boundary for different Ste and β = 1, λl/λs = 1, αs/αl = 1 (two-region problem, Cartesian geometry, n = 2)

Ste = 0.05, β = 1 Ste = 0.1, β = 1 Ste = 0.5, β = 1 Ste = 5, β = 1

τ Cho [19] present τ Cho[19] present τ Cho[19] present τ Cho[19] present

0.1 −44.3053 −44.2699 0.1 −24.0031 −23.9901 0.1 −7.7613 −7.7662 0.1 −4.1069 −4.1158
0.2 −31.3286 −31.3035 0.2 −16.9727 −16.9635 0.2 −5.4881 −5.4915 0.2 −2.9040 −2.9103
0.3 −25.5797 −25.5592 0.3 −13.8582 −13.8507 0.3 −4.4810 −4.4838 0.3 −2.3711 −2.3763
0.4 −22.1526 −22.1349 0.4 −12.0015 −11.9950 0.4 −3.8806 −3.8831 0.4 −2.0534 −2.0579
0.5 −19.8139 −19.7981 0.5 −10.7345 −10.7287 0.5 −3.4710 −3.4732 0.5 −1.8367 −1.8407
0.6 −18.0876 −18.0731 0.6 −9.7992 −9.7939 0.6 −3.1685 −3.1705 0.6 −1.6766 −1.6803
0.7 −16.7458 −16.7324 0.7 −9.0723 −9.0674 0.7 −2.9335 −2.9354 0.7 −1.5523 −1.5556
0.8 −15.6643 −15.6518 0.8 −8.4864 −8.4818 0.8 −2.7440 −2.7458 0.8 −1.4520 −1.4552
0.9 −14.7684 −14.7566 0.9 −8.0010 −7.9967 0.9 −2.5871 −2.5887 0.9 −1.3690 −1.3719
1.0 −14.0106 −13.9994 1.0 −7.5904 −7.5863 1.0 −2.4543 −2.4559 1.0 −1.2987 −1.3015
Several numerical illustrations for one-region and two-
region problems, wherein the position of the phase change
interface varies with time following a power law, namely
S(τ) = 1 − (βτ)1/n, are given in the paper. The results are
in good agreement compared with the exact and/or numerical
solutions given in the literature. For the plane inverse Stefan
problem (i = 0), it is shown that the maximum error between
the exact and the heat-balance integral approximate solution is
not larger than 2.3% when β � 2. The temperature at the fixed
boundary, u(1, τ ), maintains a constant throughout for n = 2,
decreases with time for n < 2 and increases monotonically with
time from −∞ when n > 2. For the spherical inverse Stefan
problem with n = 1, u(1, τ ) will first decrease and then in-
crease with time from the phase change temperature when the
phase change interface is moving at a constant rate all along.
As a result, u(1, τ ) is returned to the phase change tempera-
ture even though the entire sphere has not yet been solidified
completely.
In fact, the heat-balance integral method is a specific case
of the weighted residual method (i.e., the weighting function
is taken to be unit) [10], which could be applied to the inverse
Stefan problem in order to improve the accuracy of the solution
when β is larger. Using the concept of more thermal layers may
be of aid as illustrated in the application to the direct phase
change problem [12,14]. Further investigation could extend the
application of the heat-balance integral into the case of a binary
system, there may exist a two-phase region between the purely
solid and purely liquid phase. The inverse problem of this type
is a three-region problem.
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